Zero-sum free sets with small sum-set

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum free sets with small sum-set

Let A be a zero-sum free subset of Zn with |A| = k. We compute for k ≤ 7 the least possible size of the set of all subset-sums of A.

متن کامل

Zero-sum Free Sequences with Small Sum-set

Let A be a zero-sum free subset of Zn with |A| = k. We compute for k ≤ 7 the least possible size of the set of all subset-sums of A.

متن کامل

Small Maximal Sum-Free Sets

Let G be a group and S a non-empty subset of G. If ab / ∈ S for any a, b ∈ S, then S is called sum-free. We show that if S is maximal by inclusion and no proper subset generates 〈S〉 then |S| ≤ 2. We determine all groups with a maximal (by inclusion) sum-free set of size at most 2 and all of size 3 where there exists a ∈ S such that a / ∈ 〈S \ {a}〉.

متن کامل

Measure zero sets with non - measurable sum

For any C ⊆ R there is a subset A ⊆ C such that A + A has inner measure zero and outer measure the same as C + C. Also, there is a subset A of the Cantor middle third set such that A+A is Bernstein in [0, 2]. On the other hand there is a perfect set C such that C + C is an interval I and there is no subset A ⊆ C with A + A Bernstein in I.

متن کامل

Sum-free Sets of Integers

A set S of integers is said to be sum-free if a, b e 5 implies a + b 6 S. In this paper, we investigate two new problems on sum-free sets: (1) Let f(k) denote the largest positive integer for which there exists a partition of (1, 2,... ,f(k)) into k sum-free sets, and let h(k) denote the largest positive integer for which there exists a partition of {1, 2, . . . , h(k)) into k sets which are su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2011

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2011-02385-9